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Learning is fundamentally about action, enabling the

successful navigation of a changing and uncertain

environment. The experience of pain is central to this process,

indicating the need for a change in action so as to mitigate

potential threat to bodily integrity. This review considers the

application of Bayesian models of learning in pain that

inherently accommodate uncertainty and action, which, we

shall propose are essential in understanding learning in both

acute and persistent cases of pain.
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Introduction
The process of learning is fundamentally about action. In

order to successfully navigate our environment, we must

continually learn about the ever-changing limits of our

body and the constraints that it imposes upon our inter-

action with the world. The experience of pain is central to

this process, indicating the point at which our bodily

integrity is potentially compromised through action.

The interaction between pain and learning can be better

understood from an evolutionary perspective, by adopting

the concept of the explore-exploit dilemma [1]. When our

bodily integrity is threatened, we typically withdraw or

rest (exploit) to allow sufficient recovery to within bodily

limits, at which point we decide to interact (explore)

within our niche. We learn over time when it is best to

exploit and when to explore in order to promote adaptive

behaviour [2,3].
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Learning in pain, however, is not straightforward, owing

to the complexity that comprises bodily integrity and

worldly state. As a consequence, we find ourselves con-

fronted with the reality that in some cases pain persists,

seemingly decoupled from acute protection and adaptive

behaviour. This necessarily goes beyond responding to

and learning about a nociceptive signal, extending to an

overall appraisal of the bodily and sociocultural environ-

ments in which we exist [4,5]. Adequately accounting for

such a rich and diverse set of interactions is the challenge

faced in establishing a learning model in pain.

Current application of learning models in pain
Over the last 40 years, associative learning models have

come to dominate our conception of learning in pain [6].

These accounts are pervasive in different forms across the

pain field, from Pavlovian (habitual) to Operant (instru-

mental) conditioning in behavioural psychology [7,8],

extending to reinforcement learning and temporal differ-

ence models in computational neuroscience [9–12]. Oper-

ationalised through the Rescorla-Wagner model, the heart

of associative learning models lies in the concept of an

associative weight between stimulus and response, rang-

ing from immediate, reflexive stimulus-response (model-

free) to more complicated goal-directed actions, which

alter proceeding stimuli (model-based) [13–16].

Through the application of associative learning theory, it

is posited that persistent pain reflects the generalisation of

pain-related responses and maintained avoidance behav-

iour [8,17]. This conceptualisation has shaped our under-

standing of pain in the behavioural sciences, an influence

seen from scientific investigation to clinical management

[18–20].

Yet, the experience of pain sits awkwardly in these tradi-

tional stimulus-response models [21,22]. In light of recent

advances across neuroscience and behavioural domains,

there is a growing consensus that perceptual experience is

a predictive process, in which learners actively seek

information to update their prediction of their internal

and external environment [23,24]. This is problematic for

traditional associative learning models in pain for several

reasons. Firstly, pain is classically posited as a stimulus

and conflated with nociception, which downplays the

significance of pain as an experience and its explanatory

role within theories of learning. Secondly, traditional

associative learning approaches model the state of the

learner as a series of punctate values at any given time

[25], which belies the learner’s uncertainty [26–28].

Finally, these models are limited in their scope to accom-

modate the active nature of the learner (i.e. being able to
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actively explore and intervene in an uncertain environ-

ment) [29]. It is proposed that these challenges for

traditional learning models may be overcome by taking

a Bayesian approach to learning in pain.

The bayesian framework
Bayesian approaches to cognition comprise many distinct

models and theories, used in a variety of domains, and

spanning distinct levels of explanation. Often, these

distinct approaches are grouped under the label ‘Bayesian

Brain hypothesis’ [30,31], despite their many differences.

This review will focus on the underlying Bayesian model

that informs these approaches, specifying the Bayesian

derivative where appropriate.

To date, the application of Bayesian models in pain has

been limited to the description of perceptual experience,

presenting pain as part of a probabilistic inference pro-

cess that is shaped through the optimal integration of

informative cues [27]. These models propose a
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Generative models: Prediction of bodily threat (i–iv). A generative model pro

sensory consequences are generated (posterior), these are continually infor

(prior). The relative precision, reflected in the probability density of these ele

distribution), the greater the influence on the prediction. Threat panels (Left:

prior (i) or precise likelihood (ii), the resultant prediction of threat is drawn to

sensory cue (likelihood) is the same in both panels, yet the relative precision

(Right: iii–iv) demonstrate how the same relative precision can influence the

presence of objective threat-based sensory cues, can influence the overall 

prior has less influence on the posterior (negative threat/safety) (iv). These h

objective sensory information from experience, by accounting for the precis

keeping with previous experiences, homeostatic bounds and sociocultural c
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mechanism for determining the hidden (latent) causes

of encountered sensory information, summarised in a

generative model [32]. In Bayesian terms, this is

achieved through the weighted integration of prior expe-

rience and current (potentially multisensory) informa-

tion, represented using probability distributions that

reflect the agent’s subjective uncertainty—the optimal

integration of these probability distributions is given by

Bayes’ rule [33] (Figure 1).

Although not directly about learning, these accounts

expose the fundamental elements of the Bayesian

approach: a generative model, subjective uncertainty,

and variable precision-weighting. It is through the inher-

ent encoding of the learner’s uncertainty that Bayesian

models can shift away from specific associative weighting

between variables towards a learning account that is both

predictive and active. This is a significant theoretical

development [25], which will form the basis of the

proceeding review.
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vides the framework from which predictions of the hidden causes of

med by multisensory sensory cues (likelihood) and previous encounters

ments, influences the prediction. The more precise (narrow probability

 i–ii) demonstrate the relative contribution of either a relatively precise

ward the more precise source of information. In these cases, the

 of the prior determines the overall prediction of threat. Safety Panels

 prediction of negative threat, or safety. A precise prior, even in the

prediction to reflect safety (placebo effect) (iii). In contrast, an imprecise

ypothetical generative models demonstrate the possible decoupling of

ion of the prior, which reflects the ongoing learning of the individual in

onstraints.
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4 For a review of active inference, which casts it as a process of

descending projections (predictions) from motor cortex, see [43]. Other

accounts have implicated the dopaminergic system as playing a key role
Learning under uncertainty

In Bayesian approaches, learners are assumed to have

only indirect access to the state of their internal and

external environment and must, therefore, infer their

values on the basis of ambiguous and often incomplete

information [34]. In contrast to associative learning mod-

els, Bayesian models encode uncertain beliefs about the

world as probability distributions [35]. They assume that

learners maintain multiple hypotheses (with differing

degrees of belief) that reflect a range of candidate pre-

dictions about the state of the body and the world. This

invokes the notion of a generative model (Figure 1),

which can be used to generate the expected sensory

consequences that may arise from hidden (latent) states

of the environment, and in absence of external stimula-

tion [36,37].

According to Bayesian models, learning occurs through

the adjustment of the prior distribution (e.g. estimated

threat), according to Bayes rule, when new sensory cues

are encountered. This asserts that over time a learner

attempts to predict, with increasing finesse, the state of

the world. Rather than veridical reflections, these predic-

tions are an integration of probability distributions per-

taining to the precision of the information.

An emerging framework, derived from a Bayesian

approach known as predictive processing [23,38–40],

casts the inferential process in probabilistic modelling

as a matter of prediction-error minimisation. According to

this view, the learner’s generative model gives rise to

multiple top-down predictions that are met by incoming

sensory information (prediction error). This is a compet-

itive process, where the prediction that best captures the

incoming sensory information is selected, and perception

arises as a result of successful prediction-error minimi-

zation.3

The concept of prediction error here represents predic-

tions and prediction-errors as probability distributions,

thus retaining the inherent encoding of uncertainty of an

agent’s beliefs that is common to Bayesian approaches. In

predictive processing, specifically, this uncertainty is

managed by precision-weighting mechanisms, which

modulate the variance associated with the respective

distributions, in order to contribute to the overall goal

of minimising prediction error [41]. From this perspec-

tive, the learner’s principle motivation is to minimise the

discrepancy between their prediction of the world and the

sensory consequences of it (prediction error), in order to

ensure they maintain an accurate model of their world

(Figure 2). At a cortical level, it has been proposed that

precision weighting of prediction errors is mediated by
3 For a non-technical, conceptual introduction to the Predictive Pro-

cessing framework see [23]. For for an overview of how the free-energy

principle applies to the brain see [57].
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dopamine, with the potential to influence both accurate

and aberrant learning [42–44].

As we shall explore, the learner can minimise prediction

error in two ways: by updating the parameters of their

generative model in order to better predict the future

sensory consequences of action, or by holding the model

fixed and altering their action within the world to sample

information that better reflects their predictions. These

mechanisms are described under the Active Inference
framework [45�].

Active learning

The inherent uncertainty encoded in the agent’s proba-

bility distributions not only satisfies learning paradigms

that are typically challenging for associative theories (e.g.

backward blocking; see Ref. [25]), it crucially affords the

agent an active role in reducing uncertainty. Active learn-

ing under this formulation is not simply the provision of

an adequate sample space (spatial and temporal), it rests

on the crucial ability of the learner to intervene in their

world, sculpting the sensory consequences of their actions

according to what is deemed most salient. The conse-

quences of the learner’s actions can either support or

disconfirm the predictions of the consequences of action,

offering multiple means by which to reduce uncertainty

[46,47]. These considerations of active learning recognise

ecological validity from the perspective of being in, and

acting upon, the world, and where actions are taken-based

on the ongoing (motivational) homeostatic drives of the

biological agent.

Active Inference4 — a component of the predictive

processing framework — extends these basic commit-

ments and transforms the role of the learner in pain,

from a passive processor of information, to a dynamic

predictor of the relationship between the external and

internal world. A key claim of the active inference

model is that embodied action occurs as a result of

an agent predicting (inferring) the outcomes of certain

policies (e.g. proprioceptive information associated

with the motor trajectory of reaching for a cup), along

with their associated precision estimations.  The process

of predicting future consequences of actions (i.e. asso-

ciated sensory information) leads to overt behaviour

through the activation of classical reflex arcs by down-

wards projections from motor cortex [46]. An illustrative

example would be a policy that controls an agent’s task

of reaching for a cup. Before enacting the reaching
in active decision-making, while also casting this within the framework

of ecological psychology [44]. And, more recently, the active inference

framework has been extended to incorporate homeostatic control

[40,49]. For a less technical overview, including empirical and theoreti-

cal support, see chapter 4 of [23].

www.sciencedirect.com
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Figure 2
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Hierarchical Predictive Processing: from safety to threat. Proposed within a neural hierarchy, generative models are shaped over time to reflect the

precision weighting of information. There is a continual bidirectional flow of information at each level of the neural hierarchy involving top-down

predictions, prediction error, and the precision-weighting of prediction error. Schematically represented over time, an initial generative model

encompassing bodily safety entails the prediction of low bodily threat as a consequence of action. Over time, in the presence of prediction error (a

deviation from predicted bodily safety or predicted bodily threat), the generative model is updated to reflect an alteration in action consequences,

that of threat. It is suggested that the ability to flexibly update this prediction of threat, in the presence of new sensory evidence (e.g. safety cues),

is imperative to the resolution of the need to experience pain.
behaviour, the predictions associated with grasping the

cup will be unfulfilled, and therefore result in error

signals. However, instead of updating the generative

model, the agent can instead take actions that lead to

the fulfilment of error signals by actually reaching to

grab the cup. In cases where the agent predicts that a

certain policy will also likely lead to the experience of

pain (e.g. bending down to pick up a heavy box), the

agent may be reluctant to enact the respective behav-

iour, or choose to avoid it altogether.

Importantly, Seth [48] and others [49] have extended the

active inference framework to account for autonomic

regulation, arguing that similar predictions generated

by the AIC are sent to the autonomic system via smooth

muscles to activate autonomic reflexes in a similar manner

as earlier described in the case of proprioception. By

focussing on the embodied nature of the agent, active

inference creates an intuitive segue that unites learning

about the state of external world (exteroception) with the
www.sciencedirect.com 
state of the internal world (interoception). The same

predictive mechanisms that are responsible for predicting

sensory states of the external environment are also

responsible for regulating the internal environment

[48,50�,51] and for providing additional sources of infor-

mation related to motivational drives [49]. Although often

separated in traditional theories, perception and action

are entwined in active inference, due to their dual-role in

minimising uncertainty [15].

The proposition that a single underlying mechanism (i.e.

precision-weighted prediction-error minimisation) under-

lies learning about the condition of the body, has provided

instrumental guidance for describing the generation of

aberrant bodily predictions and the development of per-

sistent pathological conditions [42,43,52–54]. It is sug-

gested that persistent pain can be formulated in such a

way [55]. To illustrate this, the experience of pain is

mapped onto the ‘warning light’ scenario, proposed by

Adams et al. [43]:
Current Opinion in Behavioral Sciences 2019, 26:54–61
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Consider a circumstance in which you are

experiencing knee pain, you predict, with high

precision, that the consequences of your action in

the world will compromise the integrity of your

body. Minor fluctuations in your interoceptive sen-

sory cues (prediction errors) are assigned high pre-

cision, which serve to confirm the prediction of

potential threat and propagate your experience of

pain. You decide to visit your doctor who is unable

to determine a specific cause for your pain, they

even present you with your x-ray that shows ‘no

structural cause for your pain’. Your first thought is

that your doctor has missed something, that there

must be something else going on, or that the x-ray

has been misinterpreted. From your perspective all

of these are plausible hypotheses that accommodate

the evidence that is available to you. However, from

the doctor’s perspective, without the knowledge

that informs your prediction of bodily threat, your

suspicions seem unfounded.

This adapted account highlights the consequences of pre-

cision weighting of information in the experience of pain.

What is suggested is a decoupling between sensory input

and subjective experience, where the latter is dependent

on the relative precisions afforded to predictions and pre-

diction error (Figure 2). The learner in pain updates the

precision weighting of information that reflects their gen-

erative model in a changing world, informing whether to

exploit or explore.5 This places experiences of the body,

whether well-defined through disease process or medically

unexplained, on a continuum [55]. What distinguishes

them is the accuracy with which they account for the

underlying physiological condition of the body.

Persistent pain, from this view, occurs as a consequence of

precision: either via a precise prediction of bodily threat

(top-down) or through aberrant precision weighting of

sensory information (bottom up). In both cases, the

prediction of bodily threat persists, and so with it the

experience of pain, detached from veridical evidence of

tissue damage and unchallenged by information assigned

less precision. Altering the experience of pain thus lies in
5 Some have proposed that precision-weighting may also be responsi-

ble for the transient switching between online and offline control [41]—

allowing an agent to deliberate about some future policy, prior to taking

action within the world. Although generative models play a central role

in guiding online behaviour (i.e. active inference), by decoupling gen-

erative models from the incoming stream of sensory information (pre-

diction errors), through the use of selective modulation of incoming

prediction errors (precision-weighting), generative models may also

guide deliberative processes such as planning and offline reasoning

[41,49]. This flexible switching between offline and online control could

be viewed as a type of arbitration mechanism for model-free and model-

based forms of behavioural control, albeit one that may be best viewed

as more of a continuum of cases, rather than a well-delineated set of

options [41].
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the ability to promote the flexible reassignment of preci-

sion weighting, which in turn alters the individual’s

prediction about their body and the world.

The description of learning in pain thus becomes one that

concerns optimal precision weighting over time. Impor-

tantly, under normative models, optimality does not

pertain to accuracy. As such, aberrant but precise predic-

tions of bodily threat (e.g. high precision-weighting of

noisy sensory signals), and an accompanying experience

of pain, may persist in the absence of an objective reality

of threat. No more or less real, all experiences of the body

are a reflection of our evolutionary history, sociocultural

present, and action-oriented future.

Discussion

One core pursuit of learning models in pain is to ade-

quately accommodate the phenomena of acute and per-

sistent cases. That is, why do the majority of people

experience pain as transitory — an experience that effi-

ciently promotes acute withdrawal, mitigating further

harm — while a significant minority continue to experi-

ence pain in a way that seemingly contravenes optimal

behaviour?

We have broadly considered Bayesian models and their

relevance to learning in pain. It is proposed that in order

to accommodate the ecological validity of the learner in

pain, the concepts of uncertainty and active learning must

be addressed. As such, derivatives of the Bayesian model

have been presented, which attempt to re-conceptualise

the learner as an action-oriented predictor of their

environment.

An advantage of this approach is that learning in pain is

considered under a unifying framework. The experience

of pain becomes a problem of precision-weighting, inher-

ently contextualised in relation to previous experience

and future endeavour; both the resolution and persistence

of pain lies within one’s ability to continually update the

predictions of bodily state.

The approaches that are described are not wholly

opposed to the concepts present in associative learning

accounts (e.g. kalman filter and the Rescorla Wagner

model) [25]. However, a probabilistic formulation of

learning promotes an account that naturally extends to

the body and action [56�], and is highly relevant to

learning in pain, whereby the active sampling of one’s

environment is fundamentally altered.

Bayesian formulations have proffered much, not least a

unifying theory of mind [57]. Yet, with such promise

comes inevitable pitfalls [58,59�,60], a number of which

require consideration here. This review has focussed

predominantly on the implementation of such models

at an instrumental level, describing the macro
www.sciencedirect.com
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phenomena in pain-based learning, without delving into

the underlying neural architecture that such probabilistic

models aim to account for [61]. Although increasing

evidence supports the role of such realist applications

in perception [39,42,62], including in pain [63,64], these

are yet to mature into adequate models of complex

learning scenarios. Initial investigations comparing mod-

els of learning in pain, including generic Bayesian models

[65], suggest that there is work to be done to outperform

temporal difference models in computational neurosci-

ence paradigms [66]. Consequently, some have argued

that the Bayesian Brain should be treated as an instru-

mental theory in lieu of more developed mechanistic

explanations [67]. An important question for the future

application of probabilistic models relates to the nature of

our experimental paradigms in pain. Using a model,

designed to reflect an active learner who minimises

uncertainty over time, may demand an alteration in

traditional stimulus-response protocols.

In addition, associative learning theories would be con-

sidered incomplete without accounting for value, reward

or utility in relation to optimal behaviour. Bayesian gen-

eralisations of the Resorla-Wagner model, embodied in

the Kalman filter, assumes that the target of learning is

the problem of predicting immediate reward [68�]. How-

ever, full active inference accounts aim to replace the

notions of reward, value or utility, by subsuming them all

within the generative model [13,69]. Whether these con-

cepts can therefore be considered redundant, while still

accounting for the complexities of learning in pain and

pleasure, is yet to be determined.

Conclusion
We have presented a broad overview of Bayesian models

of learning in pain. From this view, the experience of pain

involves the continual prediction of the consequences of

action in relation to bodily threat. As such, learning in pain

is both predictive and action-oriented. Although there

still exist many challenges to the full implementation of

such probabilistic accounts, we propose that at present,

Bayesian derivatives (such as predictive processing and

active inference) can provide important considerations for

researchers and clinicians alike.
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